DocumentCode :
1361789
Title :
Development of a High-Level Simulation Approach and Its Application to Multicore Video Decoding
Author :
Seitner, Florian H. ; Bleyer, Michael ; Gelautz, Margrit ; Beuschel, Ralf M.
Author_Institution :
Vienna Univ. of Technol., Vienna, Austria
Volume :
19
Issue :
11
fYear :
2009
Firstpage :
1667
Lastpage :
1679
Abstract :
In this paper, we introduce a high-level simulation methodology for the modeling of multicore video processing architectures. This method allows design space explorations of parallel video processing applications (VPAs). It is used to test the performance of running a VPA on arbitrary virtual hardware and software configurations. The method represents an alternative to performing a "complete" decoder implementation on a field-programmable gate array or an application-specific integrated circuit. The use of our method, therefore, yields the advantage of being considerably more time, labor, and cost efficient. As an application, we use our method for designing a parallel H.264 decoder targeting 720 p 25 resolution at bit-rates up to 50 Mb/s. Starting from a single-core decoder implementation, we use our simulator for estimating the performance gain when using a multicore architecture. We then detect the major performance bottlenecks in this multicore system and perform additional decoder splittings accordingly until we reach the targeted requirements. The use of functional splitting (i.e., pipelining) and data-parallel processing is demonstrated. The final H.264 decoder architecture is capable of fulfilling our performance requirements.
Keywords :
configuration management; decoding; digital simulation; multiprocessing systems; parallel architectures; video coding; H.264 decoder; VPA; arbitrary virtual hardware; high-level simulation approach; multicore video decoding architecture; parallel video processing application; software configuration; Design exploration; H264 decoder; parallel architectures; video processing;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/TCSVT.2009.2031523
Filename :
5229355
Link To Document :
بازگشت