DocumentCode :
1361809
Title :
Adaptive Unicast Video Streaming With Rateless Codes and Feedback
Author :
Ahmad, Shakeel ; Hamzaoui, Raouf ; Al-Akaidi, Marwan
Author_Institution :
Fac. of Technol., De Montfort Univ., Leicester, UK
Volume :
20
Issue :
2
fYear :
2010
Firstpage :
275
Lastpage :
285
Abstract :
Video streaming over the Internet and packet-based wireless networks is sensitive to packet loss, which can severely damage the quality of the received video. To protect the transmitted video data against packet loss, application-layer forward error correction (FEC) is commonly used. Typically, for a given source block, the channel code rate is fixed in advance according to an estimation of the packet loss rate. However, since network conditions are difficult to predict, determining the right amount of redundancy introduced by the channel encoder is not obvious. To address this problem, we consider a general framework where the sender applies rateless erasure coding to every source block and keeps on transmitting the encoded symbols until it receives an acknowledgment from the receiver indicating that the block was decoded successfully. Within this framework, we design transmission strategies that aim at minimizing the expected bandwidth usage while ensuring successful decoding subject to an upper bound on the packet loss rate. In real simulations over the Internet, our solution outperformed standard FEC and hybrid automatic repeat request approaches. For the quarter common intermediate format Foreman sequence compressed with the H.264 video coder, the gain in average peak signal to noise ratio over the best previous scheme exceeded 3.5 dB at 90 kb/s.
Keywords :
Internet; adaptive signal processing; channel coding; decoding; forward error correction; packet radio networks; video coding; video streaming; H.264 video coder; Internet; adaptive unicast video streaming; application-layer forward error correction; channel code rate; channel encoder; decoding; expected bandwidth usage minimisation; intermediate format Foreman sequence; packet loss rate estimation; packet-based wireless networks; rateless codes; rateless erasure coding; transmitted video data protection; Error control; forward error correction; hybrid automatic repeat request; rateless codes; video streaming;
fLanguage :
English
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8215
Type :
jour
DOI :
10.1109/TCSVT.2009.2031545
Filename :
5229358
Link To Document :
بازگشت