DocumentCode :
1362665
Title :
Multispectral random field models for synthesis and analysis of color images
Author :
Bennett, Jesse ; Khotanzad, Alireza
Author_Institution :
Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA
Volume :
20
Issue :
3
fYear :
1998
fDate :
3/1/1998 12:00:00 AM
Firstpage :
327
Lastpage :
332
Abstract :
Multispectral extensions to the traditional gray level simultaneous autoregressive (SAR) and Markov random field (MRF) models are considered. Furthermore, a new image model is proposed, the pseudo-Markov model, which retains the characteristics of the multispectral Markov model, yet admits to a simplified parameter estimation method. These models are well-suited to analysis and modeling of color images. For each model considered, procedures are developed for parameter estimation and image synthesis. Experimental results, based on known image models and natural texture samples, substantiate the validity of thee results
Keywords :
Markov processes; autoregressive processes; image colour analysis; image texture; least squares approximations; parameter estimation; color images; image analysis; image synthesis; multispectral random field models; pseudo-Markov model; Image analysis; Image coding; Image color analysis; Image generation; Image segmentation; Image texture analysis; Lattices; Markov random fields; Parameter estimation; Radio frequency;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.667889
Filename :
667889
Link To Document :
بازگشت