DocumentCode :
1362900
Title :
Generating symmetric causal Markov random fields
Author :
Yousefi, Siamak ; Kehtarnavaz, Nasser
Author_Institution :
Dept. of Electr. Eng., Univ. of Texas at Dallas, Richardson, TX, USA
Volume :
47
Issue :
22
fYear :
2011
Firstpage :
1224
Lastpage :
1225
Abstract :
A method for generating symmetric causal Markov random fields (MRFs) is proposed. A simple way to parameterise this random field is also presented. To show its effectiveness, several realisations of the proposed random field are simulated and compared to the well-known causal MRF model.
Keywords :
Markov processes; computational complexity; entropy; image processing; probability; Clifford theorem; GRF; Gibbs distribution; Gibbs random field; Hammersley theorem; computational complexity; computational limitation; computationally efficient causal MRF; computationally feasible probability function; image entropy; image probability; image processing application; random field parameterisation; symmetric causal MRF; symmetric causal Markov random fields;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2011.1364
Filename :
6062005
Link To Document :
بازگشت