Title :
A 201.4 GOPS 496 mW Real-Time Multi-Object Recognition Processor With Bio-Inspired Neural Perception Engine
Author :
Kim, Joo-Young ; Kim, Minsu ; Lee, Seungjin ; Oh, Jinwook ; Kim, Kwanho ; Yoo, Hoi-Jun
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
Abstract :
A 201.4 GOPS real-time multi-object recognition processor is presented with a three-stage pipelined architecture. Visual perception based multi-object recognition algorithm is applied to give multiple attentions to multiple objects in the input image. For human-like multi-object perception, a neural perception engine is proposed with biologically inspired neural networks and fuzzy logic circuits. In the proposed hardware architecture, three recognition tasks (visual perception, descriptor generation, and object decision) are directly mapped to the neural perception engine, 16 SIMD processors including 128 processing elements, and decision processor, respectively, and executed in the pipeline to maximize throughput of the object recognition. For efficient task pipelining, proposed task/power manager balances the execution times of the three stages based on intelligent workload estimations. In addition, a 118.4 GB/s multi-casting network-on-chip is proposed for communication architecture with incorporating overall 21 IP blocks. For low-power object recognition, workload-aware dynamic power management is performed in chip-level. The 49 mm2 chip is fabricated in a 0.13 ¿m 8-metal CMOS process and contains 3.7 M gates and 396 KB on-chip SRAM. It achieves 60 frame/sec multi-object recognition up to 10 different objects for VGA (640 à 480) video input while dissipating 496 mW at 1.2 V. The obtained 8.2 mJ/frame energy efficiency is 3.2 times higher than the state-of-the-art recognition processor.
Keywords :
CMOS integrated circuits; SRAM chips; fuzzy set theory; logic circuits; network-on-chip; neural chips; object recognition; parallel processing; pipeline processing; real-time systems; CMOS process; SIMD processors; bioinspired neural perception engine; biologically inspired neural networks; communication architecture; fuzzy logic circuits; hardware architecture; human-like multiobject perception; intelligent workload estimations; low-power object recognition; multicasting network-on-chip; multiobject recognition algorithm; on-chip SRAM; power 496 mW; real-time multiobject recognition processor; size 0.13 mum; state-of-the-art recognition processor; task pipelining; three-stage pipelined architecture; visual perception; voltage 1.2 V; workload-aware dynamic power management; Circuits; Energy management; Engines; Fuzzy logic; Hardware; Image recognition; Neural networks; Object recognition; Pipeline processing; Visual perception; Multi-casting network-on-chip; multi-object recognition; multimedia processor; neural perception engine; three-stage pipelined architecture; visual perception; workload-aware dynamic power management;
Journal_Title :
Solid-State Circuits, IEEE Journal of
DOI :
10.1109/JSSC.2009.2031768