DocumentCode :
1363095
Title :
Polarized Enhanced Backscattering Spectroscopy for Characterization of Biological Tissues at Subdiffusion Length Scales
Author :
Radosevich, Andrew J. ; Rogers, Jeremy D. ; Turzhitsky, Vladimir ; Mutyal, Nikhil N. ; Yi, Jianjia ; Roy, Hemant K. ; Backman, Vadim
Author_Institution :
Department of Biomedical Engineering , Northwestern University, Evanston, USA
Volume :
18
Issue :
4
fYear :
2012
Firstpage :
1313
Lastpage :
1325
Abstract :
Since the early 1980s, the enhanced backscattering (EBS) phenomenon has been well-studied in a large variety of nonbiological materials. Yet, until recently, the use of conventional EBS for the characterization of biological tissue has been fairly limited. In this study, we detail the unique ability of EBS to provide spectroscopic, polarimetric, and depth-resolved characterization of biological tissue using a simple backscattering instrument. We first explain the experimental and numerical procedures used to accurately measure and model the full azimuthal EBS peak shape in biological tissue. Next, we explore the peak shape and height dependencies for different polarization channels and spatial coherence of illumination. We then illustrate the extraordinary sensitivity of EBS to the shape of the scattering phase function using suspensions of latex microspheres. Finally, we apply EBS to biological tissue samples in order to measure optical properties and observe the spatial length scales at which backscattering is altered in early colon carcinogenesis.
Keywords :
Backscatter; Biological tissues; Lighting; Optical scattering; Shape; Speckle; Backscattering spectroscopy; cancer detection; enhanced backscattering (EBS); polarized light Monte Carlo;
fLanguage :
English
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
1077-260X
Type :
jour
DOI :
10.1109/JSTQE.2011.2173659
Filename :
6062378
Link To Document :
بازگشت