DocumentCode :
1364744
Title :
Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case
Author :
Charalambous, Charalambos D. ; Logothetis, Andrew
Author_Institution :
Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont., Canada
Volume :
45
Issue :
5
fYear :
2000
fDate :
5/1/2000 12:00:00 AM
Firstpage :
928
Lastpage :
934
Abstract :
This paper deals with maximum likelihood (ML) parameter estimation of continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonlinear filtering is either explicitly solvable or numerically implemented. The methodology exploits the relationships between incomplete and complete data, log-likelihood and its gradient
Keywords :
continuous time systems; filtering theory; maximum likelihood estimation; nonlinear systems; probability; sensitivity analysis; stochastic systems; EM algorithm; continuous-time systems; expectation maximization algorithm; maximum likelihood estimation; nonlinear filtering; nonlinear systems; parameter estimation; probability; sensitivity analysis; stochastic systems; Filtering algorithms; Filters; Hidden Markov models; Integral equations; Maximum likelihood estimation; Nonlinear equations; Parameter estimation; Stochastic processes; Stochastic systems; System identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.855553
Filename :
855553
Link To Document :
بازگشت