Title :
A Global Spatial Similarity Optimization Scheme to Track Large Numbers of Dendritic Spines in Time-Lapse Confocal Microscopy
Author :
Li, Qing ; Deng, Zhigang ; Zhang, Yong ; Zhou, Xiaobo ; Nägerl, U. Valentin ; Wong, Stephen T C
Author_Institution :
Comput. Sci. Dept., Univ. of Houston, Houston, TX, USA
fDate :
3/1/2011 12:00:00 AM
Abstract :
Dendritic spines form postsynaptic contact sites in the central nervous system. The rapid and spontaneous morphology changes of spines have been widely observed by neurobiologists. Determining the relationship between dendritic spine morphology change and its functional properties such as memory learning is a fundamental yet challenging problem in neurobiology research. In this paper, we propose a novel algorithm to track the morphology change of multiple spines simultaneously in time-lapse neuronal images based on nonrigid registration and integer programming. We also propose a robust scheme to link disappearing-and-reappearing spines. Performance comparisons with other state-of-the-art cell and spine tracking algorithms, and the ground truth show that our approach is more accurate and robust, and it is capable of tracking a large number of neuronal spines in time-lapse confocal microscopy images.
Keywords :
biomedical optical imaging; cellular biophysics; image registration; integer programming; learning (artificial intelligence); medical image processing; neurophysiology; optical microscopy; central nervous system; dendritic spine morphology change; dendritic spines tracking; global spatial similarity optimization scheme; integer programming; memory learning; neurobiology; nonrigid registration; postsynaptic contact sites; spontaneous morphology changes; time-lapse confocal microscopy; time-lapse neuronal images; Lattices; Measurement; Microscopy; Morphology; Neurons; Pixel; Shape; Dendritic spine; free form deformation; global similarity; integer programming; time-lapse images; Algorithms; Animals; Artificial Intelligence; Cell Tracking; Dendritic Spines; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Microscopy, Confocal; Microscopy, Video; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2010.2090354