DocumentCode :
1365700
Title :
Image compression by self-organized Kohonen map
Author :
Amerijckx, Christophe ; Verleysen, Michel ; Thissen, Philippe ; Legat, Jean-Didier
Author_Institution :
Microelectron. Lab., Univ. Catholique de Louvain, Belgium
Volume :
9
Issue :
3
fYear :
1998
fDate :
5/1/1998 12:00:00 AM
Firstpage :
503
Lastpage :
507
Abstract :
Presents a compression scheme for digital still images, by using Kohonen´s neural network algorithm, not only for its vector quantization feature, but also for its topological property. This property allows an increase of about 80% for the compression rate. Compared to the JPEG standard, this compression scheme shows better performances (in terms of PSNR) for compression rates higher than 30
Keywords :
image coding; self-organising feature maps; vector quantisation; compression rate; digital still images; image compression; self-organized Kohonen map; topological property; vector quantization; Associate members; Discrete cosine transforms; Discrete transforms; Image coding; Image processing; Neural networks; Space technology; Topology; Transform coding; Vector quantization;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.668891
Filename :
668891
Link To Document :
بازگشت