DocumentCode :
1366810
Title :
Graph Cuts for Curvature Based Image Denoising
Author :
Bae, Egil ; Shi, Juan ; Tai, Xue-Cheng
Author_Institution :
Dept. of Math., Univ. of Bergen, Bergen, Norway
Volume :
20
Issue :
5
fYear :
2011
fDate :
5/1/2011 12:00:00 AM
Firstpage :
1199
Lastpage :
1210
Abstract :
Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler´s elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler´s elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.
Keywords :
image denoising; Euler´s elastica model; binary MRF models; graph cuts; image denoising; total variation minimization problems; Computational modeling; Image denoising; Mathematical model; Minimization; Noise reduction; Numerical models; TV; Binary MRF models; curvature; graph cuts; higher order models; image denoising; total variation (TV); Algorithms; Image Enhancement; Imaging, Three-Dimensional; Models, Statistical; Pattern Recognition, Automated;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2010.2090533
Filename :
5617278
Link To Document :
بازگشت