DocumentCode :
1367505
Title :
Correlation-immune functions over finite fields
Author :
Liu, Mulan ; Lu, Peizhong ; Mullen, Gary L.
Author_Institution :
Inst. of Syst. Sci., Acad. Sinica, Beijing, China
Volume :
44
Issue :
3
fYear :
1998
fDate :
5/1/1998 12:00:00 AM
Firstpage :
1273
Lastpage :
1276
Abstract :
We give a series of constructions of correlation-immune function over finite fields. We prove that F2 and F3 are the only finite fields Fq with the property that every (n-1)th correlation-immune function in n>2 variables over Fq is linear. We also show that by choosing larger finite fields one can alleviate the tradeoff between the length of the linear equivalent and the order of correlation immunity. This is useful for the design of various cryptosystems
Keywords :
Boolean functions; correlation methods; cryptography; Boolean functions; correlation immunity order; correlation-immune functions; cryptosystems; finite fields; linear functions; nonlinear functions; Boolean functions; Cryptography; Galois fields; Linear feedback shift registers; Mathematics; Polynomials; Random variables;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.669323
Filename :
669323
Link To Document :
بازگشت