DocumentCode :
1368185
Title :
Robust H_{\\infty } Synchronization Design of Nonlinear Coupled Network via Fuzzy Interpolation Method
Author :
Chen, Bor-Sen ; Chiang, Ching-Han ; Nguang, Sing Kiong
Author_Institution :
Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan
Volume :
58
Issue :
2
fYear :
2011
Firstpage :
349
Lastpage :
362
Abstract :
In this paper, the H theory is introduced to investigate the robustness and design of synchronization nonlinear coupled network. The H synchronization performance is defined as the disturbance attenuation ability for a synchronized coupled network. To measure the H synchronization performance of a nonlinear coupled network, we need to solve a Hamilton-Jacobi inequality (HJI), which is hard to treat directly. Hence, a Takagi-Sugeno fuzzy system is employed to approximate the nonlinear coupled network, so that the HJI can be replaced by a set of linear matrix inequalities. Furthermore, based on this H synchronization performance, a robust nonlinear coupled network with a prescribed H synchronization performance can be designed for a given network topology. In the robust H synchronization network, our design task is to specify the minimum coupling strengths of the corresponding links in the network topology such that the coupled network cannot only synchronize but also attenuate the external disturbance below a prescribed level. Since the design of robust H synchronization network leads to a set of bilinear matrix inequalities (BMIs), a two-step algorithm is proposed to solve the BMI-constrained optimization problem. The time-delay effect on the synchronization of coupled network is also discussed.
Keywords :
H control; control system synthesis; delays; differential equations; fuzzy systems; interpolation; linear matrix inequalities; network topology; nonlinear systems; robust control; synchronisation; BMI-constrained optimization problem; Hamilton-Jacobi inequality; Takagi-Sugeno fuzzy system; bilinear matrix inequalities; fuzzy interpolation method; network topology; nonlinear coupled network; robust H synchronization design; time-delay effect; $H_{infty}$ synchronization performance; Bilinear matrix inequalities (BMIs); coupled network; external disturbance; linear matrix inequalities (LMIs); quasi-strongly connected; synchronized network; time-delayed network;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2010.2071970
Filename :
5618594
Link To Document :
بازگشت