Title :
Analysis of thinning algorithms using mathematical morphology
Author :
Jang, Ben-Kwei ; Chin, Roland T.
Author_Institution :
Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA
fDate :
6/1/1990 12:00:00 AM
Abstract :
A precise definition of digital skeletons and a mathematical framework for the analysis of a class of thinning algorithms, based on morphological set transformation, are presented. A particular thinning algorithm (algorithm A) is used as an example in the analysis. Precise definitions and analyses associated with the thinning process are presented, including the proof of convergence, the condition for one-pixel-thick skeletons, and the connectedness of skeletons. In addition, a necessary and sufficient condition for the thinning process in general is derived, and an algorithm (algorithm B) based on this condition is developed. Experimental results are used to compare the two thinning algorithms, and issues involving noise immunity and skeletal bias are addressed
Keywords :
computerised picture processing; convergence; digital skeletons; mathematical morphology; noise immunity; skeletal bias; thinning algorithms; Algorithm design and analysis; Classification algorithms; Convergence; Digital images; Image analysis; Leg; Morphology; Shape; Skeleton; Sufficient conditions;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on