DocumentCode :
1368992
Title :
Alternative Methodologies for the Internal Quality Control of Parallel LiDAR Strips
Author :
Habib, Ayman ; Kersting, Ana Paula ; Ki In Bang ; Lee, DongCheon
Author_Institution :
Dept. of Geomatics Eng., Univ. of Calgary, Calgary, AB, Canada
Volume :
48
Issue :
1
fYear :
2010
Firstpage :
221
Lastpage :
236
Abstract :
Light Detection and Ranging (LiDAR) systems have been widely adopted for the acquisition of dense and accurate topographic data over extended areas. Although the utilization of this technology has increased in different applications, the development of standard methodologies for the quality control (QC) of LiDAR data has not followed the same trend. In other words, a lack in reliable, practical, cost-effective, and commonly acceptable QC procedures is evident. A frequently adopted procedure for QC is comparing the LiDAR data to ground control points. Aside from being expensive, this approach is not accurate enough for the verification of horizontal accuracy, unless specifically designed LiDAR targets are used. This paper is dedicated to providing accurate, economical, and convenient internal QC procedures for the evaluation of LiDAR data, which is captured from parallel flight lines. The underlying concept of the proposed methodologies is that, in the absence of systematic and random errors in system parameters and measurements, conjugate surface elements in overlapping strips should perfectly match each other. Consistent incompatibilities and the quality of fit between conjugate surface elements in overlapping strips can be used to detect systematic errors in the system parameters/measurements and to evaluate the noise level in the LiDAR point cloud, respectively. Experimental results from real data demonstrate that all the proposed methods, with one exception, produce compatible estimates of systematic discrepancies between the involved data sets, as well as good quantification of inherent noise.
Keywords :
geophysical signal processing; measurement uncertainty; optical radar; quality control; radar signal processing; remote sensing by laser beam; LiDAR data quality control; LiDAR point cloud noise level; LiDAR systems; conjugate surface elements; light detection and ranging; parallel LiDAR strip; parallel flight line LiDAR data; Error analysis; laser measurement applications; quality control (QC);
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2009.2026424
Filename :
5238545
Link To Document :
بازگشت