Title :
Approximate maximum likelihood estimators for array processing in multiplicative noise environments
Author :
Besson, Olivier ; Vincent, Francois ; Stoica, Petre ; Gershman, Alex B.
Author_Institution :
Dept. of Avionics & Syst., ENSICA, Toulouse, France
fDate :
9/1/2000 12:00:00 AM
Abstract :
We consider the problem of localizing a source by means of a sensor array when the received signal is corrupted by multiplicative noise. This scenario is encountered, for example, in communications, owing to the presence of local scatterers in the vicinity of the mobile or due to wavefronts that propagate through random inhomogeneous media. Since the exact maximum likelihood (ML) estimator is computationally intensive, two approximate solutions are proposed, originating from the analysis of the high and low signal to-noise ratio (SNR) cases, respectively. First, starting with the no additive noise case, a very simple approximate ML (AML1) estimator is derived. The performance of the AML1 estimator in the presence of additive noise is studied, and a theoretical expression for its asymptotic variance is derived. Its performance is shown to be close to the Cramer-Rao bound (CRB) for moderate to high SNR. Next, the low SNR case is considered, and the corresponding AML2 solution is derived. It is shown that the approximate ML criterion can be concentrated with respect to both the multiplicative and additive noise powers, leaving out a two-dimensional (2-D) minimization problem instead of a four-dimensional (4-D) problem required by the exact ML. Numerical results illustrate the performance of the estimators and confirm the validity of the theoretical analysis
Keywords :
approximation theory; array signal processing; direction-of-arrival estimation; electromagnetic wave scattering; inhomogeneous media; land mobile radio; maximum likelihood estimation; noise; radiowave propagation; 2D minimization problem; Cramer-Rao bound; DOA estimation; additive noise; approximate MLE; approximate maximum likelihood estimators; array processing; asymptotic variance; estimators performance; high SNR; local scatterers; low SNR; maximum likelihood estimator; mobile radio; multiplicative noise corrupted received signal; random inhomogeneous media; sensor array; signal to-noise ratio; source localization; wavefronts; Additive noise; Array signal processing; Maximum likelihood estimation; Mobile communication; Nonhomogeneous media; Scattering; Sensor arrays; Signal analysis; Signal to noise ratio; Two dimensional displays;
Journal_Title :
Signal Processing, IEEE Transactions on