DocumentCode :
1377824
Title :
24-GOPS 4.5- {\\rm mm}^{2} Digital Cellular Neural Network for Rapid Visual Attention in an Object-Recognition SoC
Author :
Lee, Seungjin ; Kim, Minsu ; Kim, Kwanho ; Kim, Joo-Young ; Yoo, Hoi-Jun
Author_Institution :
Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
Volume :
22
Issue :
1
fYear :
2011
Firstpage :
64
Lastpage :
73
Abstract :
This paper presents the Visual Attention Engine (VAE), which is a digital cellular neural network (CNN) that executes the VA algorithm to speed up object-recognition. The proposed time-multiplexed processing element (TMPE) CNN topology achieves high performance and small area by integrating 4800 (8060) cells and 120 PEs. Pipelined operation of the PEs and single-cycle global shift capability of the cells result in a high PE utilization ratio of 93%. The cells are implemented by 6T static random access memory-based register files and dynamic shift registers to enable a small area of 4.5 . The bus connections between PEs and cells are optimized to minimize power consumption. The VAE is integrated within an object-recognition system-on-chip (SoC) fabricated in the 0.13- complementary metal-oxide-semiconductor process. It achieves 24 GOPS peak performance and 22 GOPS sustained performance at 200 MHz enabling one CNN iteration on an 8060 pixel image to be completed in just 4.3 . With VA enabled using the VAE, the workload of the object-recognition SoC is significantly reduced, resulting in 83% higher frame rate while consuming 45% less energy per frame without degradation of recognition accuracy.
Keywords :
cellular neural nets; object recognition; system-on-chip; 24-GOPS 4.5- digital cellular neural network; 6T static random access memory; CNN; VAE; object recognition SoC; pipelined operation; rapid visual attention; system-on-chip; visual attention engine; Feature extraction; Program processors; Shift registers; Strontium; System-on-a-chip; Topology; Cellular neural network; object-recognition; saliency map; visual attention; Artificial Intelligence; Attention; Humans; Neural Networks (Computer); Neurons; Pattern Recognition, Automated; Pattern Recognition, Visual;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2010.2085443
Filename :
5634360
Link To Document :
بازگشت