Title :
The Probabilistic Program Dependence Graph and Its Application to Fault Diagnosis
Author :
Baah, George K. ; Podgurski, Andy ; Harrold, Mary Jean
Author_Institution :
Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA
Abstract :
This paper presents an innovative model of a program´s internal behavior over a set of test inputs, called the probabilistic program dependence graph (PPDG), which facilitates probabilistic analysis and reasoning about uncertain program behavior, particularly that associated with faults. The PPDG construction augments the structural dependences represented by a program dependence graph with estimates of statistical dependences between node states, which are computed from the test set. The PPDG is based on the established framework of probabilistic graphical models, which are used widely in a variety of applications. This paper presents algorithms for constructing PPDGs and applying them to fault diagnosis. The paper also presents preliminary evidence indicating that a PPDG-based fault localization technique compares favorably with existing techniques. The paper also presents evidence indicating that PPDGs can be useful for fault comprehension.
Keywords :
fault diagnosis; graph theory; probability; program diagnostics; reasoning about programs; uncertainty handling; fault diagnosis; fault localization technique; probabilistic analysis; probabilistic graphical models; probabilistic program dependence graph; reasoning; uncertain program behavior; Probabilistic graphical models; fault diagnosis; machine learning; program analysis.;
Journal_Title :
Software Engineering, IEEE Transactions on
DOI :
10.1109/TSE.2009.87