DocumentCode :
1379553
Title :
Pseudocyclic maximum-distance-separable codes
Author :
Krishna, Arvind ; Sarwate, Dilip V.
Author_Institution :
Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA
Volume :
36
Issue :
4
fYear :
1990
fDate :
7/1/1990 12:00:00 AM
Firstpage :
880
Lastpage :
884
Abstract :
The (n, k) pseudocyclic maximum-distance-separable (MDS) codes modulo (xn- a) over GF(q) are considered. Suppose that n is a divisor of q+1. If n is odd, pseudocyclic MDS codes exist for all k. However, if n is even, nontrivial pseudocyclic MDS codes exist for odd k (but not for even k) if a is a quadratic residue in GF(q), and they exist for even k (but not for odd k) if a is not a quadratic residue in GF(q). Also considered is the case when n is a divisor of q-1, and it is shown that pseudocyclic MDS codes exist if and only if the multiplicative order of a divides (q-1)/n, and that when this condition is satisfied, such codes exist for all k. If the condition is not satisfied, every pseudocyclic code of length n is the result of interleaving a shorter pseudocyclic code
Keywords :
error correction codes; (n, k) codes; GF(q); MDS codes; interleaving; maximum-distance-separable codes; pseudocyclic code; quadratic residue; Books; Hamming distance; Information theory; Interleaved codes; Military computing; Power measurement; Q measurement; Reed-Solomon codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.53751
Filename :
53751
Link To Document :
بازگشت