DocumentCode :
1379633
Title :
A large deviations approach to error exponents in source coding and hypothesis testing
Author :
Anantharam, V.
Author_Institution :
Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA
Volume :
36
Issue :
4
fYear :
1990
fDate :
7/1/1990 12:00:00 AM
Firstpage :
938
Lastpage :
943
Abstract :
It is pointed out that the basic results can be proved fairly easily if one uses a Sanov theorem for the distribution of types. Such a theorem comes easily from large deviation theory. A caveat is that this technique only identifies the error exponent up to terms o(n) in the exponent, whereas the combinatorial arguments give an estimate up to terms O(log n) in the exponent
Keywords :
Markov processes; coding errors; encoding; information theory; Sanov theorem; error exponents; finite Markov chains; hypothesis testing; large deviation theory; source coding; Combinatorial mathematics; Context; Encoding; Error probability; Microwave integrated circuits; Probability distribution; Reliability theory; Size measurement; Source coding; Testing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.53762
Filename :
53762
Link To Document :
بازگشت