Title :
Parametric Study of Zigzag Microstructure for Vibrational Energy Harvesting
Author :
Karami, M. Amin ; Inman, Daniel J.
Author_Institution :
Dept. of Aerosp. Eng., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
A comprehensive parametric study is presented on the vibration and the energy harvesting performance of a low-frequency zigzag energy harvester. The zigzag microelectromechanical systems (MEMS) vibrational energy harvesters have low natural frequencies which match the low-frequency range of ambient vibrations. The harvesters can, therefore, be designed to resonate with ambient excitation. The power produced by energy harvesters at resonance is orders of magnitude larger than off resonance power. The paper aims at providing an easy-to-use, comprehensive tool for designing the harvesters for different applications. The two key characteristics of the vibrational energy harvesters are their resonance frequency and their power transfer function. We formulate both vibrations and power production of the zigzag MEMS harvesters in nondimensional equations. The paper advances the state of the art in MEMS energy harvesting research area by identifying the dimensionless parameters governing mechanical vibrations and energy generation. We also investigate how the resonant frequency and the maximum power vary with each of the corresponding dimensionless parameters. The graphs summarize the parametric studies and provide sufficient tools for design of zigzag harvesters. The natural frequencies are related to six dimensionless variables, and the power transfer functions depend on 12 dimensionless parameters.
Keywords :
energy harvesting; micromechanical devices; parameter estimation; vibrations; MEMS vibrational energy harvesters; dimensionless parameter identification; energy generation; low-frequency zigzag energy harvester; mechanical vibrations; nondimensional equations; power transfer function; resonance frequency; vibration excitation; zigzag microelectromechanical systems; zigzag microstructures; Energy harvesting; Equations; Micromechanical devices; Production; Resonant frequency; Shape; Vibrations; Dimensionless; energy harvesting; low-frequency; microelectromechanical systems (MEMS); parametric study; piezoelectric;
Journal_Title :
Microelectromechanical Systems, Journal of
DOI :
10.1109/JMEMS.2011.2171321