DocumentCode :
1383696
Title :
Corner diffraction coefficients for the quarter plane
Author :
Hansen, Thorkild B.
Author_Institution :
Electromagn. Inst., Tech. Univ. of Denmark, Lyngby, Denmark
Volume :
39
Issue :
7
fYear :
1991
fDate :
7/1/1991 12:00:00 AM
Firstpage :
976
Lastpage :
984
Abstract :
The current near a right-angled corner on a perfectly conducting flat scatterer illuminated by a plane wave is expressed as a sum of three currents. The first is the physical optics current, which describes the surface effect. The second is the fringe wave current, which is found from the half-plane solution and accounts for the distortion of the current caused by the edges. The third is the corner current, which is found from the numerical solution to the electric-field integral equation applied to the square plate, and accounts for the distortion of the current caused by the corner. It is found that the corner current for the right-angled corner, illuminated from a forward direction, consists mainly of two edge waves propagating along the edges forming the corner. Analytical expressions for these edge wave currents are constructed from the numerical results. A corner diffracted field is calculated by evaluating the asymptotic corner contributions to the radiation integral over the sum of the three currents. It is found that the corner contribution from the edge wave currents in some cases is of the same size as the corner contributions from the physical optics current and the fringe wave current
Keywords :
electromagnetic wave diffraction; electromagnetic wave scattering; physical optics; corner current; diffraction coefficients; edge waves; electric-field integral equation; electromagnetic diffraction; electromagnetic scattering; fringe wave current; perfectly conducting flat scatterer; physical optics current; plane wave illumination; quarter plane; right-angled corner; Electromagnetic diffraction; Electromagnetic scattering; Frequency; Helium; Integral equations; Optical diffraction; Optical distortion; Optical scattering; Optical surface waves; Physical optics;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/8.86918
Filename :
86918
Link To Document :
بازگشت