DocumentCode :
1387561
Title :
IMM-based estimation for slowly evolving environments
Author :
Kim, Nam Soo
Author_Institution :
Sch. of Electr. Eng., Seoul Nat. Univ., South Korea
Volume :
5
Issue :
6
fYear :
1998
fDate :
6/1/1998 12:00:00 AM
Firstpage :
146
Lastpage :
149
Abstract :
We propose a new approach to environmental parameter estimation for robust speech recognition in adverse conditions. The proposed method is based on the interacting multiple model (IMM) technique widely used in the area of multiple target tracking. Through a number of continuous digit recognition experiments, we can find the effectiveness of the IMM-based approach in slowly evolving environment conditions.
Keywords :
Gaussian distribution; Kalman filters; filtering theory; parameter estimation; speech recognition; IMM-based estimation; Kalman filtering; adverse conditions; continuous digit recognition experiments; environmental parameter estimation; interacting multiple model; robust speech recognition; slowly evolving environments; Gaussian distribution; Gaussian noise; Parameter estimation; Piecewise linear approximation; Robustness; Speech recognition; State-space methods; Target tracking; Taylor series; Working environment noise;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.681432
Filename :
681432
Link To Document :
بازگشت