DocumentCode :
139008
Title :
The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data
Author :
Aziz, Omar ; Russell, Colin M. ; Park, Edward J. ; Robinovitch, Stephen N.
Author_Institution :
Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada
fYear :
2014
fDate :
26-30 Aug. 2014
Firstpage :
30
Lastpage :
33
Abstract :
Falls are a major cause of death and morbidity in older adults. In recent years many researchers have examined the role of wearable inertial sensors (accelerometers and/or gyroscopes) to automatically detect falls. The primary goal of such fall monitors is to alert care providers of the fall event, who can then commence earlier treatment. Although such fall detection systems may reduce time until the arrival of medical assistance, they cannot help to prevent or reduce the severity of traumatic injury caused by the fall. In the current study, we extend the application of wearable inertial sensors beyond post-impact fall detection, by developing and evaluating the accuracy of a sensor system for detecting falls prior to the fall impact. We used support vector machine (SVM) analysis to classify 7 fall and 8 non-fall events. In particular, we focused on the effect of data window size and lead time on the accuracy of our pre-impact fall detection system using signals from a single waist sensor. We found that our system was able to detect fall events at between 0.0625-0.1875 s prior to the impact with at least 95% sensitivity and at least 90% specificity for window sizes between 0.125-1 s.
Keywords :
accelerometers; body sensor networks; geriatrics; gyroscopes; injuries; patient care; patient treatment; support vector machines; SVM; gyroscope; lead time; post-impact fall detection; preimpact fall detection accuracy; support vector machine analysis; triaxial accelerometer; waist mounted inertial sensor; wearable inertial sensors; window size; Acceleration; Accuracy; Educational institutions; Hip; Injuries; Sensitivity; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE
Conference_Location :
Chicago, IL
ISSN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2014.6943521
Filename :
6943521
Link To Document :
بازگشت