Title :
Kinematics-Based Detection and Localization of Contacts Along Multisegment Continuum Robots
Author :
Bajo, Andrea ; Simaan, Nabil
Author_Institution :
Dept. of Mech. Eng., Vanderbilt Univ., Nashville, TN, USA
fDate :
4/1/2012 12:00:00 AM
Abstract :
In this paper, we present a novel kinematic-based framework for collision detection and estimation of contact location along multisegment continuum robots. Screw theory is used to define a screw motion deviation (SMD) as the distance between the expected and the actual instantaneous screw axis (ISA) of motion. The expected ISA is computed based on the unconstrained kinematics model of the robot, while the actual ISA is computed based on sensory information. Collisions with rigid environments at any point along the robot are detected by monitoring the SMD. Contact locations are estimated by the minimization of the SMD between the ISA that is obtained from a constrained kinematic model of the continuum robot and the one that is obtained from sensor data. The proposed contact detection and localization methods only require the relative motion of each continuum segment with respect to its own base. This strategy allows the straightforward generalization of these algorithms for an n -segment continuum robot. The framework is evaluated via simulations and experimentally on a three-segment multibackbone continuum robot. Results show that the collision-detection algorithm is capable of detecting a single collision at any segment, multiple collisions occurring at multiple segments, and total-arm constraint. It is also shown that the estimation of contact location is possible at any location along the continuum robot with an accuracy better than 20% of the segment nominal length. We believe this study will enhance manipulation safety in unstructured environments and confined spaces.
Keywords :
collision avoidance; manipulator kinematics; mechanical contact; minimisation; ISA; SMD; collision detection; collision-detection algorithm; constrained kinematic model; contact location estimation; continuum segment; instantaneous screw axis; kinematics-based detection; kinematics-based localization; manipulation safety; minimization; multiple collisions; multiple segments; multisegment continuum robots; n-segment continuum robot; rigid environments; screw motion deviation; screw theory; segment nominal length; sensory information; single collision; straightforward generalization; three-segment multibackbone continuum robot; total-arm constraint; unconstrained kinematics model; Collision avoidance; Estimation; Fasteners; Kinematics; Motion segmentation; Robot sensing systems; Collision detection; continuum robots; estimation of contact; screw theory;
Journal_Title :
Robotics, IEEE Transactions on
DOI :
10.1109/TRO.2011.2175761