DocumentCode :
1394326
Title :
Data fusion algorithm improves travel time predictions
Author :
Lim, Sharon ; Lee, Chi-Kwan
Author_Institution :
Adv. Transp. Res. Div., Korea Inst. of Constr. Technol., Goyang, South Korea
Volume :
5
Issue :
4
fYear :
2011
fDate :
12/1/2011 12:00:00 AM
Firstpage :
302
Lastpage :
309
Abstract :
Travel time is considered more useful to users than other travel-related information such as speed. It is mainly estimated by point or interval detection systems. In this study, the authors investigate the deficiency of these systems in estimating travel times when they are used in isolation, and proposed a fusion algorithm that simultaneously utilises data from both point and interval detection systems. The fusion algorithm is based on the traffic flow and k-nearest neighbourhood (k-NN) models. Specifically, the authors precisely define the so-called the time lag issue in interval detection systems. To overcome this problem, they analysed the travel time variation because of variation in traffic states using fused data from point and interval detection systems. The authors show that the travel time obtained from interval detection systems is renewed by considering the travel time variation and their results show that the proposed algorithm satisfactorily predicts the travel time with the mean absolute percentage errors (MAPE).
Keywords :
delays; sensor fusion; traffic information systems; travel industry; data fusion algorithm; interval detection system; k-nearest neighbourhood model; mean absolute percentage error; time lag issue; traffic flow; travel time prediction; travel-related information;
fLanguage :
English
Journal_Title :
Intelligent Transport Systems, IET
Publisher :
iet
ISSN :
1751-956X
Type :
jour
DOI :
10.1049/iet-its.2011.0014
Filename :
6097603
Link To Document :
بازگشت