DocumentCode :
1395166
Title :
Stability Robustness in the Presence of Exponentially Unstable Isolated Equilibria
Author :
Angeli, David ; Praly, Laurent
Author_Institution :
Dept. of Electr. & Electron. Eng., Imperial Coll., London, UK
Volume :
56
Issue :
7
fYear :
2011
fDate :
7/1/2011 12:00:00 AM
Firstpage :
1582
Lastpage :
1592
Abstract :
This note studies nonlinear systems evolving on manifolds with a finite number of asymptotically stable equilibria and a Lyapunov function which strictly decreases outside equilibrium points. If the linearizations at unstable equilibria have at least one positive eigenvalue, then almost global asymptotic stability turns out to be robust with respect to sufficiently small disturbances in the L norm. Applications of this result are shown in the study of almost global Input-to-State stability.
Keywords :
Lyapunov methods; asymptotic stability; linearisation techniques; nonlinear control systems; robust control; Lyapunov function; eigenvalue; exponentially unstable isolated equilibria; global asymptotic stability robustness; global input-to-state stability; linearizations; nonlinear systems; outside equilibrium points; Asymptotic stability; Eigenvalues and eigenfunctions; Lyapunov method; Manifolds; Nonlinear systems; Robustness; Stability analysis; Almost global stability; gradient-like systems; input-to-state stability; integral manifolds; nonlinear systems on manifolds;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2010.2091170
Filename :
5658110
Link To Document :
بازگشت