Author_Institution :
Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
Abstract :
Loop antennas are widely used in many personal communication systems such as radio pagers. This paper presents results from an extensive numerical simulation of the human interaction with loop antennas. The loop antenna with a superquadric curve, which is able to model the circular, ellipse, square, and rectangular loop is used to model the rectangular loop antenna with rounded corners. The magnetic frill source is used to model the antenna feeding structure. A realistically shaped full-scale human-body model (1.7 m) is constructed. The coupled integral equations (CIE) approach, which consists a Pocklington-type integral equation (PIE) for the loop antenna and a volume electric field integral equation (VEFIE) for the body with mutual coupling terms, are developed to numerically study this electromagnetic (EM) coupling problem. The method of moments (MoM) is employed for numerical solution. Numerical results for the antenna located at the chest pocket and waist-belt levels of the human body with arbitrary loop orientations are presented at 280-MHz VHF paging band. The pager´s internal rectangular loop antenna with rounded corners is modeled by a superquadric loop antenna. It is found that the real part of the impedance (radiation resistance) increases about five times and, hence, the antenna ohmic-loss radiation efficiency increases from 4% (in free-space) to 33, 17, and 26% for the x-, y-, and z-oriented loops when proximate to the body. The radiation efficiencies, reduced by the body absorption effect, are 13, 40, and 27% for the x-, y-, and z-oriented loops, respectively. For the y-oriented loop, which is found to be the most suitable for radio-paging communications, it has the highest value of Eθ average power gain (product of the directive gain and the ohmic-loss and body-absorption efficiencies) in the horizontal plane. The computed antenna characteristics influenced by the human body, including the input impedance, antenna patterns, cross-polarization field level, radiation efficiencies, and maximum/minimum and average power gains, are very useful for the antenna/RF design and the link budget consideration of the personal communication systems
Keywords :
antenna radiation patterns; biological effects of fields; electric fields; electric impedance; electromagnetic wave polarisation; integral equations; loop antennas; method of moments; mobile antennas; paging communication; personal communication networks; 280 MHz; MoM; Pocklington-type integral equation; VEFIE; VHF paging band; absorption effect; antenna feeding structure; antenna patterns; antenna/RF design; average power gain; body-absorption efficiency; chest pocket level; circular loop; coupled integral equations; cross-polarization field level; electromagnetic coupling; full-scale human-body model; human interaction; input impedance; link budget; magnetic frill source; method of moments; mutual coupling; numerical computation; ohmic-loss radiation efficiency; personal communication systems; power gains; radiation efficiency; radiation resistance; rectangular loop antenna; rounded corners; square loop; superquadric loop antennas; volume electric field integral equation; waist-belt level; x-oriented; y-oriented loop; z-oriented loop; Antenna feeds; Biological system modeling; Directive antennas; Electromagnetic coupling; Electromagnetic fields; Humans; Impedance; Integral equations; Mutual coupling; Numerical simulation;