• DocumentCode
    1396365
  • Title

    Bases for Riemann–Roch Spaces of One-Point Divisors on an Optimal Tower of Function Fields

  • Author

    Noseda, Francesco ; Oliveira, Gilvan ; Quoos, Luciane

  • Author_Institution
    Inst. de Mat., Univ. Fed. do Rio de Janeiro, Rio de Janeiro, Brazil
  • Volume
    58
  • Issue
    5
  • fYear
    2012
  • fDate
    5/1/2012 12:00:00 AM
  • Firstpage
    2589
  • Lastpage
    2598
  • Abstract
    For applications in algebraic geometric codes, an explicit description of bases of Riemann-Roch spaces of divisors on function fields over finite fields is needed. We give an algorithm to compute such bases for one-point divisors, and Weierstrass semigroups over an optimal tower of function fields. We also explicitly compute Weierstrass semigroups till level eight.
  • Keywords
    Galois fields; algebraic geometric codes; group codes; Riemann-Roch space; Weierstrass semigroups; algebraic geometric codes; finite fields; function field tower; one-point divisors; Electronic mail; Generators; Information theory; Materials; Poles and towers; Poles and zeros; Vectors; Algebraic geometric codes; Riemann–Roch spaces; Weierstrass semigroup; tower of function fields;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2011.2179519
  • Filename
    6101576