Title :
Variability Analysis of Sense Amplifier for FinFET Subthreshold SRAM Applications
Author :
Ming-Long Fan ; Hu, Vita Pi-Ho ; Yin-Nien Chen ; Pin Su ; Ching-Te Chuang
Author_Institution :
Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hshichu, Taiwan
Abstract :
This paper investigates the impact of intrinsic random variability on the robustness of sense amplifier (SA) for fin-shaped field-effect transistor (FinFET) subthreshold static random access memory (SRAM) applications. We employ a model-assisted statistical approach to consider both fin line edge roughness (fin LER) and work function variation, which are regarded as the major variation sources in an advanced FinFET device. Our results indicate that fin LER dominates the overall variability of subthreshold SA robustness and sensing margin. In addition, it is observed that the offset voltage (VOS) of current latch SA calculated solely from threshold voltage (VT) mismatch underestimates the actual variation and is shown to be optimistic. For large-signal single-ended inverter sensing, we find that sense “0” hinders the allowable sensing margin and needs to be carefully designed. Compared with bulk CMOS, the superior electrostatic integrity and variability of FinFET enhance the feasibility of differential sensing in subthreshold SRAM applications.
Keywords :
MOSFET; SRAM chips; amplifiers; FinFET subthreshold SRAM Applications; advanced FinFET device; bulk CMOS; current latch SA; differential sensing; electrostatic integrity; fin LER; fin line edge roughness; fin-shaped field-effect transistor; intrinsic random variability; large-signal single-ended inverter sensing; model-assisted statistical approach; sense amplifier; sensing margin; static random access memory; subthreshold SA robustness; threshold voltage mismatch; variability analysis; work function variation; Dispersion; FinFETs; Inverters; Logic gates; Low voltage; Random access memory; Sensors; Fin-shaped field-effect transistor (FinFET); sense amplifier (SA); subthreshold circuit; variability;
Journal_Title :
Circuits and Systems II: Express Briefs, IEEE Transactions on
DOI :
10.1109/TCSII.2012.2231016