Title :
Electrical Modeling of Long-Wavelength VCSELs for Intrinsic Parameters Extraction
Author :
Bacou, Alexandre ; Hayat, Ahmad ; Iakovlev, Vladimir ; Syrbu, Alexei ; Rissons, Angélique ; Mollier, Jean-Claude ; Kapon, Eli
Author_Institution :
DEOS, Univ. de Toulouse, Toulouse, France
fDate :
3/1/2010 12:00:00 AM
Abstract :
We present an efficient method to model the small- signal modulation response of a long-wavelength VCSEL chip using an equivalent electrical circuit. This circuit serves two distinct purposes. Based on T-matrix formalism, it is used to remove the parasitics contribution originating from the electrical access of the chip in order to obtain the optical cavity intrinsic frequency response as defined by the rate equations. The same circuit is also used to extract the intrinsic cavity parameters since every circuit element represents a physical optical cavity entity. The extraction of reliable intrinsic parameters requires that the circuit element values be representative of the device under test. To achieve this, we have developed a new methodology based on static and dynamic measurements such as the S-parameters and the turn-on delay time. In accordance with this procedure, each element of the cavity is fixed without numerical optimization. The good agreement between measured and simulated curves confirm the validity of the technique used.
Keywords :
S-parameters; equivalent circuits; integrated optoelectronics; laser cavity resonators; matrix algebra; optical communication equipment; semiconductor lasers; surface emitting lasers; S-parameters; T-matrix formalism; dynamic measurements; electrical modeling; equivalent electrical circuit; intrinsic parameters extraction; long haul communication systems; long wavelength VCSEL chip; optical cavity; small-signal modulation response; static measurements; turn-on delay time; Coplanar transmission lines; Delay; Distributed parameter circuits; Equations; Frequency response; Optical modulation; Parameter extraction; Semiconductor device measurement; Transmission line measurements; Vertical cavity surface emitting lasers; ${rm S}$ -parameters; Electrical modeling; intrinsic parameters; long-wavelength VCSELs; turn-on delay; wafer-fusion;
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2009.2031312