DocumentCode :
1400351
Title :
Optimized opportunistic multicast scheduling (OMS) over wireless cellular networks
Author :
Low, Tze-Ping ; Pun, Man-On ; Hong, Y. W Peter ; Kuo, C. C Jay
Author_Institution :
Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
Volume :
9
Issue :
2
fYear :
2010
fDate :
2/1/2010 12:00:00 AM
Firstpage :
791
Lastpage :
801
Abstract :
Optimized opportunistic multicast scheduling (OMS) is studied for cellular networks, where the problem of efficiently transmitting a common set of fountain-encoded data from a single base station to multiple users over quasi-static fading channels is examined. The proposed OMS scheme better balances the tradeoff between multiuser diversity and multicast gain by transmitting to a subset of users in each time slot using the maximal data rate that ensures successful decoding by these users. We first analyze the system delay in homogeneous networks by capitalizing on extreme value theory and derive the optimal selection ratio (i.e., the portion of users that are selected in each time slot) that minimizes the delay. Then, we extend results to heterogeneous networks where users are subject to different channel statistics. By partitioning users into multiple approximately homogeneous rings, we turn a heterogeneous network into a composite of smaller homogeneous networks and derive the optimal selection ratio for the heterogeneous network. Computer simulations confirm theoretical results and illustrate that the proposed OMS can achieve significant performance gains in both homogeneous and heterogeneous networks as compared with the conventional unicast and broadcast scheduling.
Keywords :
cellular radio; decoding; diversity reception; fading channels; scheduling; statistical analysis; OMS scheme; base station; channel statistics; computer simulations; decoding; extreme value theory; fountain-encoded data; heterogeneous networks; multicast gain; multiuser diversity; optimized opportunistic multicast scheduling; quasi-static fading channels; theoretical results; wireless cellular networks; Base stations; Computer simulation; Decoding; Delay effects; Delay systems; Fading; Land mobile radio cellular systems; Performance gain; Statistics; Unicast; Opportunistic scheduling, multiuser diversity, multicast gain, extreme value theory.;
fLanguage :
English
Journal_Title :
Wireless Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2010.02.090387
Filename :
5403559
Link To Document :
بازگشت