Title :
Spiral CT image deblurring for cochlear implantation
Author :
Wang, Ge ; Vannier, Michael W. ; Skinner, Margaret W. ; Cavalcanti, Marcelo G P ; Harding, Gary W.
Author_Institution :
Dept. of Radiol., Iowa Univ., Iowa City, IA, USA
fDate :
4/1/1998 12:00:00 AM
Abstract :
Cochlear implantation is the standard treatment for profound hearing loss, Preimplantation and postimplantation spiral computed tomography (CT) is essential in several key clinical and research aspects. The maximum image resolution with commercial spiral CT scanners is insufficient to define clearly anatomical features and implant electrode positions in the inner ear, In this paper, the authors develop an expectation maximization (EM)-like iterative deblurring algorithm to achieve spiral CT image super-resolution for cochlear implantation, assuming a spatially invariant linear spiral CT system with a three-dimensional (3-D) separable Gaussian point spread function (PSF). The authors experimentally validate the 3-D Gaussian blurring model via phantom measurement and profile fitting. The imaging process is further expressed as convolution of an isotropic 3-D Gaussian PSF and a blurred underlying volumetric image. Under practical conditions, an oblique reconstructed section is approximated as convolution of an isotropic two dimensional (2-D) Gaussian PSF and the corresponding actual cross section. The spiral CT image deblurring algorithm is formulated with sieve and resolution kernels for suppressing noise and edge artifacts. A typical cochlear cross section is used for evaluation, demonstrating a resolution gain up to 30%-40% according to the correlation criterion. Physical phantoms, preimplantation and postimplantation patients are reconstructed into volumes of 0.1-mm cubic voxels. The patient images are digitally unwrapped along the central axis of the cochlea and the implanted electrode array respectively, then oblique sections orthogonal to the central axis formed. After deblurring, representation of structural features is substantially improved in all the cases.
Keywords :
computerised tomography; hearing aids; image resolution; iterative methods; medical image processing; prosthetics; 3-D separable Gaussian point spread function; anatomical features; blurred underlying volumetric image; cochlear implantation; correlation criterion; expectation maximization-like iterative deblurring algorithm; implanted electrode array; medical diagnostic imaging; oblique reconstructed section; phantom measurement; physical phantoms; profile fitting; profound hearing loss treatment; spiral CT image deblurring; spiral CT image super-resolution; structural features representation; Auditory implants; Computed tomography; Convolution; Deafness; Electrodes; Image reconstruction; Image resolution; Image restoration; Imaging phantoms; Spirals; Algorithms; Artifacts; Cochlea; Cochlear Implantation; Cochlear Implants; Computer Simulation; Deafness; Ear, Inner; Humans; Image Enhancement; Image Processing, Computer-Assisted; Models, Biological; Normal Distribution; Phantoms, Imaging; Radiographic Image Enhancement; Reproducibility of Results; Software; Tomography, X-Ray Computed;
Journal_Title :
Medical Imaging, IEEE Transactions on