Title :
Matrix-geometric solutions of M/G/1-type Markov chains: a unifying generalized state-space approach
Author :
Akar, Nail ; Oguz, N.C. ; Sohraby, Khosrow
Author_Institution :
Technol. Planning & Integration, Overland Park, KS, USA
fDate :
6/1/1998 12:00:00 AM
Abstract :
We present an algorithmic approach to find the stationary probability distribution of M/G/1-type Markov chains which arise frequently in performance analysis of computer and communication networks. The approach unifies finite- and infinite-level Markov chains of this type through a generalized state-space representation for the probability generating function of the stationary solution. When the underlying probability generating matrices are rational, the solution vector for level k, xk, is shown to be in the matrix-geometric form xk+1=gFkH, k⩾0, for the infinite-level case, whereas it takes the modified form xk+1=g1Fk1H1+g 2FK-k-12H2, 0⩽k⩽K, for the finite-level case. The matrix parameters in the above two expressions can be obtained by decomposing the generalized system into forward and backward subsystems, or, equivalently, by finding bases for certain generalized invariant subspaces of a regular pencil λE-A. We note that the computation of such bases can efficiently be carried out using advanced numerical linear algebra techniques including matrix-sign function iterations with quadratic convergence rates or ordered generalized Schur decomposition. The simplicity of the matrix-geometric form of the solution allows one to obtain various performance measures of interest easily, e.g., overflow probabilities and the moments of the level distribution, which is a significant advantage over conventional recursive methods
Keywords :
Markov processes; computer networks; convergence of numerical methods; matrix decomposition; probability; queueing theory; state-space methods; telecommunication networks; M/G/1-type Markov chains; backward subsystem; communication networks; computer networks; finite-level Markov chains; forward subsystem; generalized invariant subspaces; generalized state-space representation; infinite-level Markov chains; level distribution moments; linear algebra; matrix parameters; matrix-geometric solutions; matrix-sign function iterations; ordered generalized Schur decomposition; overflow probabilities; performance analysis; probability generating function; quadratic convergence rates; rational probability generating matrices; recursive methods; solution vector; stationary probability distribution; stationary solution; unifying generalized state-space approach; Asynchronous transfer mode; Cities and towns; Distributed computing; Linear algebra; Matrix decomposition; Multiplexing; Nails; Performance analysis; Probability distribution; Switches;
Journal_Title :
Selected Areas in Communications, IEEE Journal on