Title :
Latent Class Modeling for Site- and Non-Site-Specific Classification Accuracy Assessment Without Ground Data
Author_Institution :
Sch. of Geogr., Univ. of Nottingham, Nottingham, UK
fDate :
7/1/2012 12:00:00 AM
Abstract :
Accuracy assessment should be a fundamental component of an image classification analysis and is typically undertaken following either a non-site- or a site-specific methodology. The assessment of classification accuracy is, however, often difficult, with many challenges associated with the ground data typically required. Using a series of classifications of two test sites, this paper shows that accuracy assessment from both perspectives is possible through the use of a latent class modeling approach in the absence of ground data. This is possible because the parameters of a latent class model that explains the observed associations in class labeling made by a series of classifications provide estimates of class cover and conditional probabilities of class membership that equate to popular non-site- and site-specific (producer´s accuracy) measures of accuracy, respectively. Additionally, the latent class model provides a new classification that could be evaluated by traditional means if ground data are available. The classification of each test site derived from the latent class model was accurate, being of equivalent accuracy to a conventional ensemble classification that was based on the same series of classifications for a site. The ability to derive a highly accurate classification and yield estimates of classification accuracy without ground data to form a testing set indicates the considerable promise of the method and a means to reduce demands for costly ground data that may also be a source of error due to imperfections.
Keywords :
geophysical image processing; geophysical techniques; image classification; performance evaluation; class cover; class labeling; class membership; ensemble classification; ground data; image classification analysis; latent class modeling; nonsite-specific classification accuracy assessment; performance evaluation; Accuracy; Analytical models; Data models; Remote sensing; Resource management; Testing; Training; Image classification; performance evaluation;
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
DOI :
10.1109/TGRS.2011.2174156