DocumentCode :
1403038
Title :
The order of complexity of electrical networks
Author :
Bryant, P.R.
Volume :
106
Issue :
10
fYear :
1959
fDate :
9/1/1959 12:00:00 AM
Firstpage :
174
Lastpage :
188
Abstract :
The natural frequencies of an electrical network are defined, and the number of these natural frequencies is called the order of complexity of the network. RLC networks are considered, and the order of complexity, ¿, is shown to be given by ¿ = BL + N + S ¿ SC ¿ SCR. Here, BL is the number of inductors in the network, N is the number of nodes, S, SC and SCR are the connectivities, i.e. the number of separate parts of, respectively, the given network and those subnetworks formed of the capacitors only and of the capacitors and resistors only. Other expressions for ¿ are also obtained. It is shown that this order of complexity is also the number of arbitrary integration constants in the complete solution of the network equations, and the number of dynamically-independent network variables. Complete sets of such dynamically-independent variables are obtained by a process of elimination from the network equations. A particular type of complete set is classified topologically, such sets being made up of voltages across capacitors forming a forest of the capacitor-only network obtained by open-circuiting all the resistors and inductors, together with the currents through inductors forming a set of chords of the inductor-only network obtained by short-circuiting all the capacitors and resistors.
Keywords :
circuit theory; multipole networks;
fLanguage :
English
Journal_Title :
Proceedings of the IEE - Part C: Monographs
Publisher :
iet
ISSN :
0369-8904
Type :
jour
DOI :
10.1049/pi-c.1959.0031
Filename :
5245103
Link To Document :
بازگشت