DocumentCode :
1403500
Title :
Existence, learning, and replication of periodic motions in recurrent neural networks
Author :
Ruiz, A. ; Owens, David H. ; Townley, Stuart
Author_Institution :
Centre for Syst. & Control Eng., Exeter Univ., UK
Volume :
9
Issue :
4
fYear :
1998
fDate :
7/1/1998 12:00:00 AM
Firstpage :
651
Lastpage :
661
Abstract :
A class of recurrent neural networks is shown to possess a stable limit cycle. A gradient type algorithm is used to modify the parameters of the network so that it learns and replicates autonomously a time varying periodic signal. The results are applied to controlling the repetitive motion of a two-link robot manipulator
Keywords :
learning (artificial intelligence); limit cycles; recurrent neural nets; stability; time-varying systems; gradient type algorithm; parameter modification; periodic motion learning; periodic motion replication; recurrent neural networks; repetitive motion; stable limit cycle; time varying periodic signal; two-link robot manipulator; Bifurcation; Control engineering; Intelligent networks; Learning systems; Limit-cycles; Manipulator dynamics; Motion control; Neural networks; Recurrent neural networks; Robots;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.701178
Filename :
701178
Link To Document :
بازگشت