DocumentCode :
1403625
Title :
Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures
Author :
Tan, Vincent Y F ; Anandkumar, Animashree ; Willsky, Alan S.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
Volume :
58
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
2701
Lastpage :
2714
Abstract :
The problem of learning tree-structured Gaussian graphical models from independent and identically distributed (i.i.d.) samples is considered. The influence of the tree structure and the parameters of the Gaussian distribution on the learning rate as the number of samples increases is discussed. Specifically, the error exponent corresponding to the event that the estimated tree structure differs from the actual unknown tree structure of the distribution is analyzed. Finding the error exponent reduces to a least-squares problem in the very noisy learning regime. In this regime, it is shown that the extremal tree structure that minimizes the error exponent is the star for any fixed set of correlation coefficients on the edges of the tree. If the magnitudes of all the correlation coefficients are less than 0.63, it is also shown that the tree structure that maximizes the error exponent is the Markov chain. In other words, the star and the chain graphs represent the hardest and the easiest structures to learn in the class of tree-structured Gaussian graphical models. This result can also be intuitively explained by correlation decay: pairs of nodes which are far apart, in terms of graph distance, are unlikely to be mistaken as edges by the maximum-likelihood estimator in the asymptotic regime.
Keywords :
Gaussian distribution; Markov processes; graph theory; information theory; least squares approximations; maximum likelihood estimation; Gaussian distribution; Markov chain; chain graph; correlation coefficients; correlation decay; error exponent analysis; extremal structure analysis; extremal tree structure; graph distance; i.i.d. samples; independent-and-identically distributed samples; learning tree-structured Gaussian graphical models; least-square problem; maximum-likelihood estimator; star graph; tree structure estimation; Error exponents; Euclidean information theory; Gauss-Markov random fields; Gaussian graphical models; large deviations; structure learning; tree distributions;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2010.2042478
Filename :
5406101
Link To Document :
بازگشت