Title :
On Modeling Product Advertisement in Large-Scale Online Social Networks
Author :
Li, Yongkun ; Zhao, Bridge Qiao ; Lui, John C S
Author_Institution :
Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
Abstract :
We consider the following advertisement problem in online social networks (OSNs). Given a fixed advertisement investment, e.g., a number of free samples that can be given away to a small number of users, a company needs to determine the probability that users in the OSN will eventually purchase the product. In this paper, we model OSNs as scale-free graphs (either with or without high clustering coefficient). We employ various influence mechanisms that govern the influence spreading in such large-scale OSNs and use the local mean field (LMF) technique to analyze these online social networks wherein states of nodes can be changed by various influence mechanisms. We extend our model for advertising with multiple rating levels. Extensive simulations are carried out to validate our models, which can provide insight on designing efficient advertising strategies in online social networks.
Keywords :
advertising data processing; graph theory; investment; probability; social networking (online); LMF technique; fixed advertisement investment; large-scale OSN; large-scale online social networks; local mean field technique; modeling product advertisement; multiple rating levels; scale-free graphs; Analytical models; Approximation methods; Computational modeling; Equations; Mathematical model; Random variables; Social network services; Local mean field (LMF); online social networks (OSNs); product advertisement; viral market;
Journal_Title :
Networking, IEEE/ACM Transactions on
DOI :
10.1109/TNET.2011.2178078