DocumentCode :
1407084
Title :
Motion field interpolation for temporal error concealment
Author :
Al-Mualla, M.E. ; Canagarajah, C.N. ; Bull, D.R.
Author_Institution :
Centre for Commun. Res., Bristol Univ., UK
Volume :
147
Issue :
5
fYear :
2000
fDate :
10/1/2000 12:00:00 AM
Firstpage :
445
Lastpage :
453
Abstract :
When transmitted over practical communication channels, compressed video can suffer severe degradation. One approach to combat the effect of channel errors is error concealment. It is an attractive choice because it does not increase the bit rate, it does not require any modifications to the encoder, it does not introduce any delays and it can be applied in almost any application. Conventional temporal concealment techniques estimate one concealment displacement for the whole damaged block and then use translational displacement compensation to conceal the block from a reference frame. The main problem with such techniques is that incorrect estimation of the concealment displacement can lead to poor concealment of the whole or most of the block. Two novel temporal concealment techniques are presented. In the first technique, motion field interpolation is used to estimate one concealment displacement per pel of the damaged block and then each pel is concealed individually. In this case, incorrect estimation of a concealment displacement will only affect the corresponding pel. On a block level this may affect few pels rather than the entire block. In the second technique, multi-hypothesis motion compensation is used to combine the first technique with a boundary matching temporal concealment technique to obtain a more robust performance. Simulation results, within both an isolated error propagation environment and an H.263 codec, show the superior subjective and objective performance of the proposed techniques when compared with conventional temporal concealment techniques
Keywords :
error statistics; interpolation; motion compensation; telecommunication channels; video codecs; video coding; visual communication; BER; H.263 codec; boundary matching temporal concealment; channel errors; communication channels; compressed video transmission; concealment displacement; isolated error propagation environment; motion field interpolation; multi-hypothesis motion compensation; objective performance; pixel; reference frame; simulation results; subjective performance; temporal error concealment; translational displacement compensation;
fLanguage :
English
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
Publisher :
iet
ISSN :
1350-245X
Type :
jour
DOI :
10.1049/ip-vis:20000385
Filename :
883989
Link To Document :
بازگشت