DocumentCode :
1407481
Title :
Program Phase-Aware Dynamic Voltage Scaling Under Variable Computational Workload and Memory Stall Environment
Author :
Kim, Jungsoo ; Yoo, Sungjoo ; Kyung, Chong-Min
Author_Institution :
Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
Volume :
30
Issue :
1
fYear :
2011
Firstpage :
110
Lastpage :
123
Abstract :
Most complex software programs are characterized by program phase behavior and runtime distribution. Dynamism of the two characteristics often makes the design-time workload prediction difficult and inefficient. Especially, memory stall time whose variation is significant in memory-bound applications has been mostly neglected or handled in a too simplistic manner in previous works. In this paper, we present a novel online dynamic voltage and frequency scaling (DVFS) method which takes into account both program phase behavior and runtime distribution of memory stall time, as well as computational workload. The online DVFS problem is addressed in two ways: intraphase workload prediction and program phase detection. The intraphase workload prediction is to predict the workload based on the runtime distribution of computational workload and memory stall time in the current program phase. The program phase detection is to identify to which program phase the current instant belongs and then to obtain the predicted workload corresponding to the detected program phase, which is used to set voltage and frequency during the program phase. The proposed method considers leakage power consumption as well as dynamic power consumption by a temperature-aware combined Vdd/Vbb scaling. Compared to a conventional method, experimental results show that the proposed method provides up to 34.6% and 17.3% energy reduction for two multimedia applications, MPEG4 and H.264 decoder, respectively.
Keywords :
decoding; electronic engineering computing; multimedia systems; power aware computing; program processors; H.264 decoder; MPEG4; complex software programs; computational workload runtime distribution; design-time workload prediction; dynamic power consumption; frequency scaling method; frequency setting; intraphase workload prediction; leakage power consumption; memory stall environment; memory stall time; memory-bound applications; multimedia applications; online DVFS problem; online dynamic voltage; processor energy model; program phase detection; program phase-aware dynamic voltage scaling; temperature-aware combined voltage scaling; variable computational workload; voltage setting; Clocks; Decoding; Energy consumption; Phase detection; Runtime; Software; Time frequency analysis; Dynamic voltage and frequency scaling (DVFS); energy optimization; memory stall; phase; runtime distribution;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2010.2068630
Filename :
5671536
Link To Document :
بازگشت