Title :
Relationship Between Clinical Assessments of Function and Measurements From an Upper-Limb Robotic Rehabilitation Device in Cervical Spinal Cord Injury
Author :
Zariffa, José ; Kapadia, Naaz ; Kramer, John L K ; Taylor, Philippa ; Alizadeh-Meghrazi, Milad ; Zivanovic, Vera ; Albisser, Urs ; Willms, Rhonda ; Townson, Andrea ; Curt, Armin ; Popovic, Milos R. ; Steeves, John D.
Author_Institution :
Toronto Rehabilitation Inst., Toronto, ON, Canada
fDate :
5/1/2012 12:00:00 AM
Abstract :
Upper limb robotic rehabilitation devices can collect quantitative data about the user´s movements. Identifying relationships between robotic sensor data and manual clinical assessment scores would enable more precise tracking of the time course of recovery after injury and reduce the need for time-consuming manual assessments by skilled personnel. This study used measurements from robotic rehabilitation sessions to predict clinical scores in a traumatic cervical spinal cord injury (SCI) population. A retrospective analysis was conducted on data collected from subjects using the Armeo Spring (Hocoma, AG) in three rehabilitation centers. Fourteen predictive variables were explored, relating to range-of-motion, movement smoothness, and grip ability. Regression models using up to four predictors were developed to describe the following clinical scores: the GRASSP (consisting of four sub-scores), the ARAT, and the SCIM. The resulting adjusted R^2 value was highest for the GRASSP “Quantitative Prehension” component (0.78), and lowest for the GRASSP “Sensibility” component (0.54). In contrast to comparable studies in stroke survivors, movement smoothness was least beneficial for predicting clinical scores in SCI. Prediction of upper-limb clinical scores in SCI is feasible using measurements from a robotic rehabilitation device, without the need for dedicated assessment procedures.
Keywords :
biomechanics; biomedical measurement; diseases; handicapped aids; injuries; medical robotics; motion control; neurophysiology; patient rehabilitation; regression analysis; ARAT scores; GRASSP quantitative prehension; SCIM scores; clinical function assessments; clinical measurements; grip ability; manual clinical assessment scores; movement smoothness; regression models; retrospective analysis; robotic sensor data; skilled personnel; stroke survivors; time-consuming manual assessments; traumatic cervical spinal cord injury population; upper-limb robotic rehabilitation device; user movements; Data models; Joints; Predictive models; Robot sensing systems; Spinal cord injury; Training; Action Research Arm Test (ARAT); Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP); Spinal Cord Independence Measure (SCIM); regression analysis; robotic rehabilitation; spinal cord injury; upper extremity; Adult; Biomechanics; Cervical Vertebrae; Data Collection; Female; Hand; Hand Strength; Humans; Linear Models; Male; Middle Aged; Models, Statistical; Movement; Range of Motion, Articular; Reproducibility of Results; Retrospective Studies; Robotics; Spinal Cord Injuries; Treatment Outcome; Upper Extremity;
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
DOI :
10.1109/TNSRE.2011.2181537