Title :
Comparison of Texture Analysis Schemes Under Nonideal Conditions
Author :
Kandaswamy, Umasankar ; Schuckers, Stephanie A. ; Adjeroh, Donald
Author_Institution :
Dept. of Organismal Biol. & Anatomy, Univ. of Chicago, Chicago, IL, USA
Abstract :
Several recent advancements in the field of texture analysis prompt some fundamental questions. For instance, what is the true impact of these novel advancements under real-world environments? When do these novel advancements fail to perform? Which methods perform better and under what conditions? In this work, we investigate these and other issues under nonideal image acquisition environments, specifically, environments with changing conditions due to illumination variations and those caused by both affine and nonaffine transformations. We study the performance of nine popular texture analysis algorithms using three different datasets, with varying levels of difficulty. Experiments are performed on nonideal texture datasets under five different setups. We find that most state-of-the-art techniques do not perform well under these conditions. To a large extent, their performance under nonideal conditions depends critically on the nature of the textural surface. Moreover, most techniques fail to perform reliably when the number of classes in the dataset is increased significantly, over the regular-size datasets used in previous work. Multiscale features performed reasonably well against variations caused by illumination and rotation but are prone to fail under changes in scale. Surprisingly, the performance for most of the algorithms is generally stable on structured or periodic textures, even with variations in illumination or affine transformations.
Keywords :
affine transforms; image texture; lighting; illumination invariance; illumination variations; nonaffine transformation; nonideal image acquisition; nonideal texture datasets; rotation invariance; scale invariance; textural surface; texture analysis schemes; Algorithm design and analysis; Image color analysis; Light sources; Lighting; Surface texture; Three dimensional displays; Training; Color texture; illumination invariance; rotation invariance; scale invariance; texture analysis algorithms;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2010.2101612