DocumentCode :
1412671
Title :
A transform approach to permutation groups of cyclic codes over Galois rings
Author :
Blackford, Jason Thomas ; Ray-Chaudhuri, Dwijendra K.
Author_Institution :
Dept. of Math., Ohio State Univ., Columbus, OH, USA
Volume :
46
Issue :
7
fYear :
2000
fDate :
11/1/2000 12:00:00 AM
Firstpage :
2350
Lastpage :
2358
Abstract :
Berger and Charpin (see ibid., vol.42, p.2194-2209, 1996 and Des., Codes Cuyptogr., vol.18, no.1/3, p.29-53, 1999) devised a theoretical method of calculating the permutation group of a primitive cyclic code over a finite field using permutation polynomials and a transform description of such codes. We extend this method to cyclic and extended cyclic codes over the Galois ring GR (pa, m), developing a generalization of the Mattson-Solomon polynomial. In particular, we classify all affine-invariant codes of length 2m over Z4 , thus generalizing the corresponding result of Kasami, Lin, and Peterson (1967) and giving an alternative proof to Abdukhalikov. We give a large class of codes over Z4 with large permutation groups, which include generalizations of Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Muller (RM) codes
Keywords :
BCH codes; Galois fields; Reed-Muller codes; cyclic codes; linear codes; polynomials; set theory; transforms; BCH codes; Bose-Chaudhuri-Hocquenghem codes; Galois rings; Mattson-Solomon polynomial; Reed-Muller codes; affine-invariant codes; code length; cyclic codes; extended cyclic codes; finite field; linear codes; permutation groups; permutation polynomials; transform approach; Algebra; Binary codes; Cryptography; Galois fields; Helium; Linear code; Mathematics; Parity check codes; Polynomials;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.887849
Filename :
887849
Link To Document :
بازگشت