Title :
SelectCast: Scalable Data Aggregation Scheme in Wireless Sensor Networks
Author :
Wang, Cheng ; Jiang, ChangJun ; Tang, Shaojie ; Li, Xiang-Yang
Author_Institution :
Dept. of Comput. Sci. & Eng., Tongji Univ., Shanghai, China
Abstract :
In this work, for a wireless sensor network (WSN) of n randomly placed sensors with node density lambda in [1,n], we study the tradeoffs between the aggregation throughput and gathering efficiency. The gathering efficiency refers to the ratio of the number of the sensors whose data have been gathered to the total number of sensors. Specifically, we design two efficient aggregation schemes, called single-hop-length (SHL) scheme and multiple-hop-length (MHL) scheme. By novelly integrating these two schemes, we theoretically prove that our protocol achieves the optimal tradeoffs, and derive the optimal aggregation throughput depending on a given threshold value (lower bound) on gathering efficiency. Particularly, we show that under the MHL scheme, for a practically important set of symmetric functions called divisible perfectly compressible (DPC) functions, including the mean, max, and various kinds of indicator functions, etc., the data from Theta (n) sensors can be aggregated to the sink at the throughput of a constant order Theta (1), implying that, our MHL scheme is indeed scalable.
Keywords :
wireless sensor networks; SelectCast; divisible perfectly compressible functions; gathering efficiency; indicator functions; multiple-hop-length scheme; node density; optimal aggregation throughput; scalable data aggregation scheme; single-hop-length scheme; symmetric functions; wireless sensor networks; Lattices; Protocols; Temperature measurement; Temperature sensors; Throughput; Wireless sensor networks; Wireless sensor networks; aggregation capacity; data aggregation; percolation theory;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
DOI :
10.1109/TPDS.2011.312