• DocumentCode
    1415664
  • Title

    Autocalibration of Triaxial MEMS Accelerometers With Automatic Sensor Model Selection

  • Author

    Frosio, Iuri ; Pedersini, Federico ; Borghese, N. Alberto

  • Author_Institution
    Comput. Sci. Dept., Univ. of Milan, Milan, Italy
  • Volume
    12
  • Issue
    6
  • fYear
    2012
  • fDate
    6/1/2012 12:00:00 AM
  • Firstpage
    2100
  • Lastpage
    2108
  • Abstract
    Up to now, little attention has been posed on a principled derivation of the cost function used for autocalibration of MEMS tri-axial accelerometers. By formulating the calibration problem in the context of maximum likelihood estimate, we derive here a general formulation that can be reduced to the classical quadratic cost function under certain hypotheses. Moreover, we adopt the Akaike information criterion to automatically choose the most adequate linear sensor model for the given calibration data set. Experiments on simulated and real data show the effectiveness of the proposed approach.
  • Keywords
    accelerometers; calibration; maximum likelihood estimation; microsensors; Akaike information criterion; autocalibration; automatic sensor model selection; classical quadratic cost function; maximum likelihood estimation; most adequate linear sensor model; triaxial MEMS accelerometers; Accelerometers; Accuracy; Calibration; Data models; Micromechanical devices; Noise; Vectors; Accelerometer; Akaike information criterion; autocalibration; maximum likelihood; microelectromechanical systems (MEMS);
  • fLanguage
    English
  • Journal_Title
    Sensors Journal, IEEE
  • Publisher
    ieee
  • ISSN
    1530-437X
  • Type

    jour

  • DOI
    10.1109/JSEN.2012.2182991
  • Filename
    6123172