DocumentCode :
1415882
Title :
Optimal Ternary Constant-Weight Codes With Weight 4 and Distance 5
Author :
Zhang, Hui ; Zhang, Xiande ; Ge, Gennian
Author_Institution :
Dept. of Math., Zhejiang Univ., Hangzhou, China
Volume :
58
Issue :
5
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
2706
Lastpage :
2718
Abstract :
Constant-weight codes (CWCs) play an important role in coding theory. The problem of determining the sizes for optimal ternary CWCs with length n, weight 4, and minimum Hamming distance 5 ((n,5,4)3 code) has been settled for all positive integers n ≤ 10 or n >; 10 and n ≡ 1 mod 3 with n ∈ {13,52,58} undetermined. In this paper, we investigate the problem of constructing optimal (n,5,4)3 codes for all lengths n with the tool of group divisible codes. We determine the size of an optimal (n,5,4)3 code for each integer n ≥ 4 leaving the lengths n ∈ {12,13,21,27,33,39,45,52} unsolved.
Keywords :
Hamming codes; error correction codes; error detection codes; ternary codes; coding theory; group divisible codes; minimum Hamming distance; optimal ternary constant-weight codes; positive integers; Copper; Hamming distance; Medical services; Upper bound; Vectors; Zinc; Constant-weight codes (CWCs); group divisible codes (GDCs); ternary codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2179412
Filename :
6123205
Link To Document :
بازگشت