DocumentCode :
1416031
Title :
A Novel Symmetrical Rectifier Configuration With Low Voltage Stress and Ultralow Output-Current Ripple
Author :
Zhao, Chen ; Chen, Min ; Zhang, Guoxing ; Wu, Xinke ; Qian, Zhaoming
Author_Institution :
Coll. of Electr. Eng., Zhejiang Univ., Hangzhou, China
Volume :
25
Issue :
7
fYear :
2010
fDate :
7/1/2010 12:00:00 AM
Firstpage :
1820
Lastpage :
1831
Abstract :
The dc-dc topologies with capacitive output filter are going to be widely used especially for high-output current applications because of its inherent advantages in the lower voltage stress on rectifiers and the smaller occupied printed circuit board layout area at the secondary side. However, the parasitic resonance between the equivalent leakage inductance of the power transformer and the equivalent output junction capacitance of the rectifier still practically exists in the center-tapped rectification configuration, which leads to considerable voltage ringing on the rectifier and then results in the utilization of the rectifier with much higher breakdown voltage rate and the decrease of conversion efficiency. Moreover, the relatively larger output-current ripple induces the both larger conduction loss in the secondary-side windings of the power transformer and the capacitive output filter. In this paper, a novel symmetrical rectifier configuration is proposed, which can effectively clamp the practical voltage stress on the rectifier without any parasitical voltage spike and reduce the output-current ripple due to the bypass effect of the auxiliary flying-balancing capacitors. The leakage inductance and the output filter capacitor can be treated as an inherent small LC filter to reduce the output voltage ripple further. Based on the theoretical analysis and the optimal design considerations, a 300-W lab-made LLC resonant dc-dc converter with this proposed configuration is built up to verify its advantages in high conversion efficiency.
Keywords :
DC-DC power convertors; capacitors; filters; magnetic leakage; power supply quality; rectifiers; resonant power convertors; LC filter; LLC resonant dc-dc converter; auxiliary flying-balancing capacitors; center-tapped rectification configuration; equivalent leakage inductance; low voltage stress; parasitic resonance; parasitical voltage spike; power 300 W; power transformer; printed circuit board layout area; symmetrical rectifier configuration; ultralow output-current ripple; Capacitive filter; dc–dc converter; high efficiency; low voltage stress; synchronous rectifier;
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2010.2042819
Filename :
5411814
Link To Document :
بازگشت