• DocumentCode
    1417543
  • Title

    Parameter estimation problems with singular information matrices

  • Author

    Stoica, Petre ; Marzetta, Thomas L.

  • Author_Institution
    Dept. of Syst. & Control, Uppsala Univ., Sweden
  • Volume
    49
  • Issue
    1
  • fYear
    2001
  • fDate
    1/1/2001 12:00:00 AM
  • Firstpage
    87
  • Lastpage
    90
  • Abstract
    The case of a singular Fisher information matrix (FIM) represents a significant complication for the theory of the Cramer-Rao lower bound (CRB) that is usually handled by resorting to the pseudoinverse of the Fisher matrix. We take a different approach in which the CRB is derived as the solution to an unconstrained quadratic maximization problem, which enables us to handle the singular case in a simple yet rigorous manner. When the Fisher matrix is singular, except under unusual circumstances, any estimator having the specified bias derivatives that figure in the CRB must have infinite variance
  • Keywords
    information theory; matrix inversion; parameter estimation; CRB; Cramer-Rao lower bound; infinite variance; parameter estimation problems; pseudoinverse Fisher matrix; singular Fisher information matrix; singular information matrices; unconstrained quadratic maximization problem; Blind equalizers; Control systems; Covariance matrix; Density functional theory; Information technology; Neural networks; Parameter estimation; Positron emission tomography; Symmetric matrices; System identification;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.890346
  • Filename
    890346