Title :
Energy-aware interference-sensitive geographic routing in wireless sensor networks
Author :
Huang, Heng ; Hu, Gangwei ; Yu, F. ; Zhang, Zhenhao
Author_Institution :
Key Lab. of Optimal Fiber Sensing & Commun., Minist. of Educ. UESTC, Chengdu, China
Abstract :
Energy conservation and interference reduction are the two ultimate goals in the design of network protocols for wireless sensor networks (WSNs). Energy-aware geographic routing has been considered as an attractive routing scheme for energy conservation in WSNs owing to its desirable scalability and simplicity. However, most energy-aware geographic routing protocols seldom consider interference reduction. The authors present an energy-aware interference-sensitive geographic routing (EIGR) protocol, which focuses on minimising the total network energy consumption and reducing interference. EIGR adaptively uses an anchor list to guide data delivery, and selects the minimum-interference link from energy-optimal relay region for data delivery. To further reduce the energy consumption and interference, EIGR adjusts the transmission power of each forwarding node so as just to reach the selected next forwarding node. Simulation results demonstrate that the proposed approach exhibits noticeably higher energy efficiency, shorter end-to-end delay and higher packet delivery ratio compared with other geographic routing protocols.
Keywords :
energy consumption; interference suppression; routing protocols; wireless sensor networks; EIGR protocol; WSN; end-to-end delay; energy conservation; energy-aware geographic routing; energy-aware interference-sensitive routing; interference reduction; network energy consumption; network protocol; packet delivery ratio; routing protocol; wireless sensor network;
Journal_Title :
Communications, IET
DOI :
10.1049/iet-com.2011.0154