Title :
A Model Predictive Control Strategy Toward Optimal Structured Treatment Interruptions in Anti-HIV Therapy
Author :
Pannocchia, Gabriele ; Laurino, Marco ; Landi, Alberto
Author_Institution :
Dipt. di Ing. Chimica, Univ. of Pisa, Pisa, Italy
fDate :
5/1/2010 12:00:00 AM
Abstract :
In this paper, model predictive control (MPC) strategies are applied to the control of human immunodeficiency virus infection, with the final goal of implementing an optimal structured treatment interruptions protocol. The MPC algorithms proposed in this paper use a dynamic model recently developed in order to mimic both transient responses and ultimate behavior, and to describe accordingly the different effect of commonly used drugs in highly active antiretroviral therapy (HAART). Simulation studies show that the proposed methods achieve the goal of reducing the drug consumption (thus minimizing the severe side effects of HAART drugs) while respecting the desired constraints on CD4+ cells and free virions concentration. Such promising results are obtained with realistic assumptions of infrequent (possibly noisy) measurements of a subset of model state variables. Furthermore, the control objectives are achieved even in the presence of mismatch between the dynamics of true patients and that of the MPC model.
Keywords :
drugs; microorganisms; nonlinear dynamical systems; patient treatment; predictive control; HAART; HIV infection control; MPC strategy; anti-HIV therapy; drug consumption; dynamic model; highly active antiretroviral therapy; human immunodeficiency virus; model predictive control; optimal structured treatment interruptions; Antiretroviral therapy; human immunodeficiency virus control; model predictive control (MPC); therapy optimization; Algorithms; Anti-HIV Agents; Anti-Retroviral Agents; Antiretroviral Therapy, Highly Active; Computer Simulation; Drug Therapy, Computer-Assisted; HIV Infections; Humans; Models, Biological; Treatment Outcome;
Journal_Title :
Biomedical Engineering, IEEE Transactions on
DOI :
10.1109/TBME.2009.2039571